
A primer on covering spaces for robot
exploration

Ari Blumenthal
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA
ablumen2@illinois.edu

May 16, 2011

Abstract

The notion of covering spaces, with its roots in algebraic topology,
can be used to study many aspects of robot exploration and envi-
ronmental modeling. We will look at the problem of a mobile robot
exploring an environment with an omnidirectional detection sensor
and see how covering spaces can be useful in constructing a map of
the environment. Then we will begin to quantify the limitations of
the sensor by exploring the badness of a given environment.

1 Introduction

The problem of exploring and mapping environments with robots is an im-
portant problem in the robotics community. With technology today growing
smaller, faster and cheaper than ever before, a major focus has been tackling
this challenge with simple inexpensive devices. As such it is as important
as ever to solve these problems with minimalistic sensor models and provide
efficient means for modeling complex environments.

One such minimalistic approach looks at a robot with a single pebble.
A natural problem that arises is determining whether or not such robot can
learn the environment. An algorithm for this is provided in [1] and shows

1

that it is indeed possible in strongly connected graphs. A further problem
explores whether or not an environment has any holes. Results in [3] have
found that a single robot with a pebble is able to make these distinctions.

In this paper, we will continue this minimalistic approach and look at
how with simple sensor models, it is possible for robots to describe complex
environments full of landmarks with simpler, more efficient models. To do
so, we will draw on previous work done in algebraic topology [2], in which
the notion of covering spaces has provided a useful tool. More specifically,
we will first define our use of covering spaces and the problem more generally
in Section 2. Then we will go on to look at some examples of these simpler
spaces in Section 3. Later we will introduce a metric for comparing different
spaces (Section 4).

2 Problem definition

Let an environment, written E, be a subset of R2. Let G ⊂ E be a set of
landmarks, where each g ∈ G is a point in E. We will consider a robot as
a point free to move about the environment. As such, we describe its state
space as X ⊂ R2. The robot will be equipped with a single omnidirectional
sensor capable of detecting and reporting the set of labels visible to the robot
at its current location.

Let L be the set of all valid class labels. With this sensor model, our
robot can recognize the labels of visible landmarks, but not how many of
an individual label are present. Therefore, the sensor mapping will be a
function h : X → P(L). An important concept for us to think about then is
the preimage of our sensor mapping, h−1(s) = {x ∈ X | s = h(x)}. In other
words, given a set of labels s ∈ P(L), h−1(s) is the set of all possible points
in the environment where our robot could currently be located while having
its sensor output be s.

We say two points p and q are visibly connected if there exists a path
from p to q such that for every point p′ in that path h(p) = h(p′) = h(q).
A visibly connected region m is maximal if d is another visibly connected
region and d ⊇ m⇒ d = m. Two maximal visibly connected regions, d1 and
d2 are adjacent if p ∈ d1 and q ∈ d2 implies that there exists a path from p
to q and a single point r on that path, such that for every point p′ before r,
h(p′) = h(p) and every point q′ after r, h(q′) = h(q).

When working with these regions, it often makes intuitive sense to instead

2

think about the dual graph. That is, we create the visibility graph, written
Ψ, where the set of all vertices in Ψ, written V (Ψ), contains all maximal
visibly connected regions. There is an edge between d1, d2 ∈ V (Ψ), written
d1d2 ∈ E(Ψ) for each border d1 shares with d2. It is important to note
two key features of these regions: (1) they are always distinct (∀d1, d2 ∈
V (Ψ), d1∩d2 = ∅) and (2) the entire set of regions covers E (

⋃
d∈V (Ψ) d = E).

Also, one key feature of this graph is that it is inherently planar, since the
environment of which it is based is R2.

Let Ψ and Ψ̃ be the visibility graphs for X and X̃, respectively. A cover-
ing space of a state space X is a space X̃ together with a map p : X̃ → X
that satisfies the condition that there exists a set of maximal visibly con-
nected regions V (Ψ) = {xα} of X such that for each α, p−1(xα) is a disjoint
union of maximal visibly connected regions in X̃. In addition, we say that a
covering space is proper if the following conditions hold:

1. Let xα ∈ V (Ψ) and let Y = {xβ : xαxβ ∈ E(Ψ)}. If p(a) = xα then
for each y ∈ Y there exists a unique b ∈ V (Ψ̃) such that p(b) = y and
ab ∈ E(Ψ̃).

2. For every sequence A = {a1, a2, . . .} of maximal visibly connected re-
gions where each ai ∈ V (Ψ̃), if aiai+1 ∈ E(Ψ̃) and aiai+1 6= ai−1ai for all
ai ∈ A, then there exists another sequence D = {x1, x2, . . .} where each
xi ∈ V (Ψ) and the following hold true for all ai ∈ A: (a) p(ai) = xi,
(b) xixi+1 ∈ E(Ψ), and (c) xixi+1 6= xi−1xi.

3. Given sensor mappings h : X → P(L) and h̃ : X̃ → P(L) for our robot,
then for all a ∈ X̃ and x ∈ X, p(a) = x if and only if h̃(a) = h(x)

Note that a proper covering space requires that (1) that there is a strong
local restraint which requires every intersection in the covering space to have
the same number of paths entering and exiting it as in the original space, (2)
that each path a robot could take in the covering space X̃ by ‘just walking
forward’ can be taken in the original space X by doing the same, and (3)
sensor output is conserved by the mapping p. In some situations it might
make more sense to weaken one of these restraints, in which case proper
covering spaces could be defined differently.

3

Figure 1: (a) Hallway with a closed loop (b) Closed loop again with maximal
visibly connected regions shown

3 Introduction to different environments

In order to fully understand these spaces, it is important to explore some
example spaces and associated covering spaces.

3.1 Closed loop

The first environment we will look at is that of a single closed loop and can be
seen in Figure 1(a). The set G = {g1, g2} contains two landmarks, each with
a unique label (shown in the figure by their color). Here the set of possible
labels L = {“blue”, “red”}. The valid locations for the robot to move about
the environment are shown by the areas shaded gray. Let Ψ0 be the visibility
graph for this loop. In Figure 1(b), one can see that there are four maximal
visibly connected regions, so V (Ψ0) = {x1, x2, x3, x4}. When the robot is in
x1, only the red landmark is visible, so h(x1) = {“red”}. Similarly, when the
robot is in x3, only the blue landmark is visible, so h(x3) = {“blue”}. In
both x2 and x4 either landmark is visible, so h(x2) = h(x4) = L. Also, for
each xi ∈ V (Ψ0), xix(i+1)%4 ∈ E(Ψ0) and xix(i+3)%4 ∈ E(Ψ0).

Now, let us consider which environments could be covering spaces for

4

Figure 2: (a) A longer closed loop. (b) An even longer closed loop

our simple closed loop. The first ones we will look at are larger loops with
more than two landmarks. Consider the loop seen in Figure 2(a). The set
G′ = {g′1, g′2, g′3, g′4} contains four landmarks, each with one of the two labels
from L. Let Ψ1 be the visibility graph for this loop. The robot can move
between any of the shaded maximal visibly connected regions. The set of
all such regions V (Ψ1) = {a1, a2, . . . , a8}. For all ai ∈ V (Ψ1), there are two
edges adjacent to it: aia(i+7)%8 and aia(i+1)%8. If we let h̃ : X̃ → P(L)
be the sensor mapping for our robot moving around this environment, then
h̃(a1) = h̃(a5) = {“red”}, h̃(a3) = h̃(a7) = {“blue”}, and h̃(ak) = L for k
even.

Let X be the state space of a robot travelling around the original closed
loop and let X̃ be the state space of a robot traveling around the loop in
Figure 2(a). Let p : X̃ → X be defined as p(ai) = xi%4. Therefore, each
xi has two values mapping to it, ai and a2i. So, for every maximal visibly
connected region xi ∈ X, p−1(xi) = ai ∪ a2i and ai ∩ a2i = ∅. Hence, X̃ is a
covering space for X.

But we can do better still! X̃ is a proper covering space of X. To confirm
this, let us check the three necessary conditions:

1. Let xi ∈ V (Ψ0). Then Y = {x(i+1)%4, x(i+3)%4}. Since p−1(xi) =
{ai, a2i}, we have two regions to check. First let us check ai. Since
aiai+1 ∈ E(Ψ1) and p(ai+1) = x(i+1)%4, pick ai+1 for x(i+1)%4. For
x(i+3)%4, we pick a(i+7)%8, because aia(i+7)%8 ∈ E(Ψ1) and p(a(i+7)%8) =
x((i+7)%8)%4 = x(i+3)%4. Similarly, for a2i, we pick x2i−1 for x(i+3)%4 and

5

x(2i+1)%8 for x(i+1)%4.

2. Let A be an arbitrary sequence that satisfies the necessary condi-
tions. That is, the robot is either moving clockwise or counter-clockwise
around the larger closed loop. If it is moving clockwise, then A =
{ai, a(i+1)%8, a(i+2)%8, . . .}. Consider then

D = {p(ai), p(a(i+1)%8), p(a(i+2)%8), . . .} = {xi%4, x(i+1)%4, x(i+2)%4, . . .}

Now we have to check three three conditions. Well, for (a), if xk and
ak are the kth elements of D and A, respectively, then p(ak) = xk for
all ak ∈ A and xk ∈ D by construction. For (b), if xk = xm%4 for some
m ∈ 0, 1, 2, 3, then xk+1 = x(m+1)%4 and clearly xm%4x(m+1)%4 ∈ E(Ψ0).
For (c), since the robot is always moving clockwise around the loop, it
is impossible for xkxk+1 = xk−1xk. Therefore the three conditions are
satisfied for all clockwise sequences. Now suppose the robot is moving
counter-clockwise around the larger closed loop. Then A is of the form
{ai, a(i+7)%8, a(i+6)%8, . . .}, and we pickD = {xi%4, x(i+3)%4, x(i+2)%4, . . .}.
Similarly we could show that our set D satisfies the three conditions.

3. This is obviously true, since h̃(a1) = h̃(a5) = h(x1) = {“red”}, h̃(a3) =
h̃(a7) = h(x1) = {“blue”}, and both labels are visible everywhere else.

As can be seen in Figure 2(b), we can go further and make the loop
even larger. In this case the previous methods for mapping maximal visibly
connected regions to that of the original closed loop are still valid. In fact
we could make the loop arbitrarily big, by increasing the number of ‘notches’
and landmarks in the loop, so that if the robot moved around the larger loop,
it remains consistent with what it would see if it moved around the smaller
loops. This allows us to create an infinite set of loops which are all covering
spaces for our original closed loop!

But a question remains of whether constructing environments in this way
provides the only method of generating covering spaces for the original closed
loop. In fact, that is not the case. Consider now an infinite path like that
seen in Figure 3. For this environment, the set G contains an infinite number
of landmarks, still with only the two labels from L. If we let Ψ2 be the
visibility graph for the infinite path, then the set of all maximal visibly
connected regions V (Ψ2) = {. . . , a−2, a−1, a0, a1, a2, . . .} is infinite and for
each ak ∈ V (Ψ2), ak−1ak ∈ E(Ψ2) and akak+1 ∈ E(Ψ2).

6

Figure 3: An infinite path. Also a covering space for the closed loop and a
really long stroll for the robot.

Let X again be the state space of a robot travelling around the original
closed loop, and let X2 be the state space for a robot traveling in the infinite
path. Let p : X2 → X be defined as p(ai) = xi%4. Now, each xi has an
infinite number of regions mapping to it. That is, for every maximal visibly

connected region xi ∈ X, p−1(xi) =
⋃
n∈Z

a4n+i and for any m,n ∈ Z such that

m 6= n, a4m+i ∩ a4n+i = ∅. Hence, X2 is a covering space for X. We could
also show that X2 is even a proper covering space of X following the same
methods used for the larger closed loop.

So, now that we’ve seen a couple examples of proper covering spaces, it
makes sense to look at an example of a space that initially seems like it might
be a proper covering space, but fails. Consider the path seen in Figure 4(a),
which extends to infinity in one direction, but terminates in the other. This
is quite similar to the previous infinte path that we saw; however, the fact
that this one terminates in one direction prevents it from being a proper
covering space for X. Lets look at why.

Let Φ3 be the visibility graph for this new path. Then V (Φ3) = {a1, a2, a3, . . .}
and for all i ≥ 2, aiai−1 ∈ E(Φ3). Let X3 be the state space for a robot trav-
eling in this path. Let p : X3 → X be defined as p(ai) = xi%4. So we have

7

Figure 4: (a) An infinite path that terminates in one direction (b) The double
loop.

for all xi ∈ X, p−1(xi) =
⋃
n∈N

a4n+i and for any m,n ∈ N such that m 6= n,

a4m+i ∩ a4n+i = ∅. So, X3 is a covering space of X. However, it is not a
proper covering space. It fails when we look at the local restraint. Consider
x1 ∈ V (Φ). Then let Y = {x2, x4}. Since p(a1) = x1 then for each element
of Y there must exist a unique b ∈ V (Φ3) that is adjacent to a1 and maps to
it. However, there is only one region adjacent to a1, namely a2, so we cannot
find a second region to map to the other element of Y. Hence, X3 is not a
proper covering space of X.

Now that we have a better understanding of covering spaces, lets look at
how one might quantitatively compare different spaces.

4 Measure of an environment

Let O = {s ∈ P(L) | h−1(s) 6= ∅}. We call this the visibility set of a pair
(G,E), since it is the set of sets of labels that a robot could potentially see if
it were to travel to every point in E. Recall that for a visibility graph Φ, that
V (Φ) is the set of all maximal visibly connected regions. Let the badness

8

of a pair (G,E) be B(G,E) =
|V (Φ)|
|O|

. So, when B(G,E) > 1, we know that

there are multiple maximal visibly connected regions that share the same
set of labels s ∈ P(L). Ideally, if we needed to store or keep track of an
environment in a robot’s memory, we would want to minimize the amount of
data repetition. Therefore, by comparing badness we provide a useful means
of distinguishing the usefulness of different spaces.

Lets look at a couple examples. Consider the double loop seen in Fig-
ure 4(b). If Φ is the visibility graph for this environment, then |V (Φ)| =
3, since there are three disjoint maximal visibly connected regions. O =
{{“red”}, {“blue”}, {“red”, “blue”}}, so |O| = 3. Thus, B(G,E) = 3/3 = 1.

In Figures 5 and 6, we provide several covering spaces for the double loop
(the ten proofs have been omitted for the sake of brevity). In each case,
|O| = 3; however, the number of maximal visibly connected regions varies
greatly from one to the next. For example, in covering space (1), |V (Φ1)| = 6,
so B(G,E) = 6/3 = 2. For (3), |V (Φ3)| = 9, so B(G,E) = 9/3 = 3.
For (5), |V (Φ5)| = 12, so B(G,E) = 12/3 = 4. On the other hand, for
spaces (7)-(10), the number of maximal visibly connected regions is infinite,
so B(G,E) = +∞.

In fact, for all n ≥ 1, it is possible to construct a covering space of the
double loop with a badness of n. Covering spaces (2) and (4) provide an
interesting intuition into this construction. For (2), the outer boundary of
the environment is a quadrilateral and the resulting badness is 2. For (4), it is
a hexagon with a badness of 3. Suppose we want to construct an environment
that produces a covering space with an arbitrary badness of k. We need only
start with a path in the shape of a 2k-gon with a blue landmark on every
other vertex. Then, we connect each vertex without a blue landmark to the
adjacent vertices without blue landmarks and add a red landmark in each
added path. This will result in an environment with k intersections from
which blue and red landmarks are visible, k regions from which just a blue
landmark is visible, and k regions from which only red is visible. This gives
a total of 3k maximal visibly connected regions and a badness of k.

5 Conclusions

As we’ve seen, covering spaces can be a powerful tool for finding simpler
spaces that seem identical to larger, more complicated environments. As

9

Figure 5: Several Covering space for the double loop.

10

Figure 6: Several Covering space for the double loop (cont.)

11

such, this tool could prove useful in many problems associated with robotics
and motion planning, such as counting targets or finding goals. One could
even remove the dependence on landmarks and explore the spaces generated
when multiple robots are released in an environment.

Finally, it would be quite useful to study further the design of complex
environments, which are covering spaces for much simpler spaces. This would
allow robots to move around and work in the complex environment, while
more easily performing computations on a simpler map of the environment.
In this way, it may be possible to decrease the difficulty of normally chal-
lenging tasks.

References

[1] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power
of a pebble: Exploring and mapping directed graphs. Information and
Computation, 176:1–21, 2002.

[2] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[3] S. Suri, E. Vicari, and P. Widmayer. Simple robots with minimal sensing:
From local visibility to global geometry. International Journal of Robotics
Research, 2008.

12

